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Abstract 

Background  The aim of our research was to design and evaluate an Artificial Neural Network (ANN) model using 
a systemic grid search for the early prediction of major adverse cardiac events (MACE) among patients presenting 
to the triage of an emergency department.

Methods  This is a single-center, cross-sectional study using electronic health records from January 2017 to Decem-
ber 2020. The research population consists of adults coming to our emergency department triage at Aga Khan 
University Hospital. The MACE during hospitalization was the main outcome. To enhance the architecture of an ANN 
using triage data, we used a systematic grid search strategy. Four hidden ANN layers were used, followed by an out-
put layer. Following each hidden layer was back normalization and a dropout layer. MACE was predicted using three 
binary classifiers: ANN, Random Forests (RF), and logistic regression (LR). The overall accuracy, sensitivity, specificity, 
precision, and recall of these models were examined. Each model was evaluated using the receiver operating charac-
teristic curve (ROC) and an F1-score with a 95% confidence interval.

Results  A total of 97,333 emergency department visits were recorded during the study period, with 33% of patients 
having cardiovascular symptoms. The mean age was 54.08 (19.18) years old. The MACE was observed in 23,052 (23.7%) 
of the patients, in-hospital (up to 30 days) mortality in 10,888 (11.2%) patients, and cardiac arrest in 5483 (5.6%) 
patients. The data used for training and validation were 77,866 and 19,467 in an 80:20 ratio, respectively. The AUC 
score for MACE with ANN was 0.97, which was greater than RF (0.96) and LR (0.96). Similarly, the precision-recall curve 
for MACE utilizing ANN was greater (0.94 vs. 0.93 for RF and 0.93 for LR). The sensitivity for MACE prediction using ANN, 
RF, and LR classifiers was 99.3%, 99.4%, and 99.2%, respectively, with the specificities being 94.5%, 94.2%, and 94.2%, 
respectively.

Conclusion  When triage data is used to predict MACE, death, and cardiac arrest, ANN with systemic grid search gives 
precise and valid outcomes and will benefit in predicting MACE in emergency rooms with limited resources that have 
to deal with a substantial number of patients.
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Introduction
Cardiovascular disease is a major cause of illness and 
death worldwide [1], with the presentation of acute chest 
discomfort in five to twenty percent of emergency room 
visits [2–5], ranging from benign to potentially fatal, such 
as aortic dissection, pulmonary embolism, and acute cor-
onary syndrome [6, 7].

In a busy emergency setting, it is difficult to classify 
and treat the subgroups of people with cardiovascular 
disease; hence, prediction scores such as HEART [7, 8], 
GRACE (Global Registry of Acute Coronary Events) [9], 
and TIMI (thrombolysis in myocardial infarction) [10], 
have emerged to facilitate the process to aid in disposi-
tion and decision-making. However, in overcrowded 
and busy emergency rooms, the time required to uti-
lize these scoring systems might be troublesome [11]. 
Hence, in recent years, artificial intelligence (AI) and 
machine learning (ML) applications in emergency care 
have emerged [12], with studies showing that ML out-
performs conventional measures by managing the many 
factors accessible via electronic medical records and big 
data [13–15]. Many different studies employed AI algo-
rithms to generate scores for mortality interpretation as a 
method for establishing triage ordering [16–20].

For evaluations of the major adverse cardiac effect 
(MACE), previous studies have included regression-
based models such as the Framingham Risk Score (FRS), 
the GRACE, and the TIMI research [21]. However, 
these models do not consider the intricate relation-
ships between clinical factors. The systemic grid search 
approach is deemed superior for multivariable, compli-
cated multiple logistic regression (LR) and, simpler to 
execute with non-functional data and has shown high 
performance based on clinical presentation parameters 
[22]. Also, the evaluation of predictor variables using 
various machine learning algorithms and systemic grid 
approaches serves well in the analysis of non-functional 
data with hyperparameters.

An artificial neural network (ANN) emulates the struc-
tural framework of biological neural networks. Compris-
ing interconnected artificial neurons arranged in layers, 
this computational model undergoes a training process 
to optimize the weights of connections. Through this 
refinement, the algorithm acquires the capability to dis-
cern patterns, relationships, and features within data, 
facilitating accurate predictions and classifications on 
novel, unseen datasets. Therefore, in our study, we aim to 
develop and validate an ANN model and utilize the sys-
temic grid search based on triage presentation vitals and 
cardiovascular symptoms to predict MACE at the tri-
age level in an emergency setting. This approach shows 
intricate connections among factors and produces reli-
able, predictive forecasts for cardiac outcomes. Hence, 

our model will help prevent MACE by allowing early 
detection and timely intervention in the emergency 
department.

Methods
Study design, setting, and population
This was a cross-sectional study undertaken in the emer-
gency department at Aga Khan Hospital, which is an 
urban, 62-bed emergency department that serves almost 
60,000 patients yearly. The triage data utilized for this 
research was gathered from hospital electronic data-
bases from December 2017 to December 2020. All indi-
viduals (age 18 and older) who arrived at the emergency 
room with cardiovascular symptoms were included in 
the research. In the index ED visit, the criteria for car-
diovascular symptoms (chest pain, sweating, shortness 
of breath, shoulder pain, arm pain, jaw pain, impending 
doom, hypotension, etc.) were derived according to the 
International Classification of Diseases, Tenth Revision, 
Chapter  11 (ICD-10) [23]. Excluded were patients who 
lacked a disposition record, were deceased upon admis-
sion, were moved to another hospital from the ED, or 
were discharged against medical advice (LAMA).

Between January 1, 2017, and December 31, 2020, a 
total of 292,953 patients presented to the triage of the 
emergency department, where the emergency sever-
ity index (ESI), a five-level scale, was used to triage the 
patients [24]. Eighty-five thousand nine hundred twenty-
nine patients who were less than 18  years old were 
removed, while 25,573 were eliminated owing to missing 
information, which included missing hospital registra-
tion numbers as well as missing outcome information. In 
day-to-day emergency services, some patients reach the 
triage counter but are not admitted into the emergency 
room due to either overcrowding (diversion) or being 
left without being seen (LWBS). Further, 21,440 patients 
were excluded due to transfer out, LAMA (Leaving 
Against Medical Advice), and death on arrival (DOA). 
The remaining 69,317 were sent home, and the actual 
sample size was 97,333 (Fig. 1).

The sample size represented all individuals who pre-
sented to the triage of our emergency department with 
cardiovascular-related complaints. According to the ESI 
triage categorization, the patients were further subdi-
vided into high-risk (P1 and P2) and low-risk (P3, P4, and 
P5). For reporting observational research, the STROBE 
(Strengthening the Reporting of Observational Studies 
in Epidemiology) checklist for observational studies was 
used.

Data features and missing data imputation
The dataset comprised 44 feature variables of demo-
graphic and clinical characteristics of patients, among 
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which several were predictors of MACE, mortality, and 
cardiac arrest based on prior research. The variables 
included age (years), gender, triage vitals (systolic blood 
pressure, diastolic blood pressure, respiratory rate, oxy-
gen saturation, and temperature), presenting symptoms, 
cardiac diagnosis, pre-existing comorbidities, triage cat-
egory, triage processing time windows, and disposition, 
as well as the outcome variable of all-cause in-hospital 
(up to 30  days) mortality, cardiac arrest, and MACE 
(STEMI (ST-segment elevation myocardial infarction), 
NSTEMI (non-ST elevation myocardial infarction), acute 
pulmonary edema, heart failure, and cardiogenic shock). 
Electrocardiography was not used owing to its technical 
limitations and interpretive variability. Our computer-
ized triage record had 2.6% missing triage vitals and 0.6% 
missing category covariates, which were subsequently 
accounted for using the imputation method based on 
random forests (RF) algorithms. The imputation algo-
rithm was initiated with the average values for continu-
ous variables and the most frequent category for the 
categorical variables.

Outcome measurements
We established MACE (STEMI, NSTEMI, acute pulmo-
nary edema, heart failure, and cardiogenic shock) dur-
ing the hospital stay as primary outcome metrics for our 

investigation. The secondary outcomes were all-cause in-
hospital (up to 30 days) and cardiac arrest following the 
initial ED visit.

Data processing and model development
In the absence of an independent study cohort for the 
validation of models, we have adopted the train-test split 
approach to develop and test the prediction accuracy of 
the models. The complete dataset was split into two sets: 
the training dataset, which consisted of 80% randomly 
selected cases, and the testing dataset, which consisted 
of the remaining 20% of random observations (holdout 
cases). The training dataset was used to train the model 
for outcome prediction, and the testing dataset was used 
to assess the performance of the trained model for out-
come prediction. Three binary classifiers, ANN, RF, and 
LR, were trained and evaluated for three distinct tasks, 
namely the prediction of MACE, in-hospital (up to 
30 days) mortality, and cardiac arrest.

ANN classifier
The optimal hyperparameter setting and structure of 
the ANN model were identified with the help of a grid 
search strategy. Based on the classifier’s performance, 
a model with four hidden layers was used. Grid search 
was used to adjust a total of nine hyperparameters of the 
ANN model, including the number of neurons in the first 
hidden layer [search space 1000, 800, 600], the number 
of neurons in the second hidden layer [search space 600, 
400, 200], the number of neurons in the third hidden 
layer [search space 400, 200, 100], the number of neurons 
in the fourth hidden layer [search space 100, 50, 25], the 
learning rate [search space 1e − 1, 1e − 2, 1e − 3, 1e − 4, 
1e − 5], the dropout rate [search space 0.4, 0.5, 0.6, 0.7], 
activation function “LeakyReLU” parameter alfa [search 
space 0.01, 0.02, 0.03, 0.04, 0.05], batch size for batch 
normalization [search space 8, 16, 32, 64], and number 
of epochs [search space 10, 15, 20, 30]. Each hidden layer 
was followed by a dropout layer and batch normalization. 
The activation function was “LeakyReLU” with “binary 
crossentropy” loss function. Using a grid search strategy, 
the ideal hyperparameters’ settings and training param-
eters for the three tasks namely the prediction of MACE, 
cardiac arrest, and in-hospital (up to 30 days) mortality.

RF classifier
In the same way, three different RF classifiers were 
trained and tested to see how well they could predict 
MACE, in-hospital (up to 30 days) mortality, and cardiac 
arrest. The grid search approach was adopted to optimize 
the four parameters of the RF classifier. The four hyper-
parameters and their corresponding search spaces are as 
follows: the number of trees [search space 100, 200, 500], 

Fig. 1  Flow chart showing the exclusion criteria and final number 
of patients included in the analysis
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the size of the random subsets of features to consider 
when splitting a node [search space: auto,’ sqrt, log2, and 
the search space for the random subsets of features], the 
depth of each tree in the forest [search space 6, 7, 8, 9, 
10], and the criteria for splitting nodes in a decision tree 
[search space: ‘Gini,’ ‘entropy’].

LR classifier
Finally, classifiers based on binary LR were developed to 
predict the three outcome variables, namely MACE, in-
hospital (up to 30 days) mortality, and cardiac arrest.

In addition to comparing ANN, RF, and LR with one 
another for predicting mortality, cardiac arrest, and 
MACE, the Emergency Severity Index (ESI), a routinely 
used risk stratification modality in the ED, was compared 
with the three classifiers. The prediction performance of 
each of the classifiers and the ESI was evaluated using the 
validation dataset.

In the validation dataset, all models were tested for 
their overall accuracy of prediction. The sensitivity, speci-
ficity, recall precision, and F1-score of each model were 
calculated. Using the predicted probabilities of ANN, 
RF, and LR classifiers, the receiver operating character-
istic (ROC) curve analysis was performed, and the area 
under the curve (AUC) was evaluated across these three 
outcomes.

Feature selection
Using the “featurewiz” technique, significant features 
for the classification of three outcome variables, namely 
in-hospital (up to 30 days) mortality, cardiac arrest, and 
MACE, were obtained separately. In supplemental files, 
the specifics of the chosen characteristics for each of the 
three jobs are described (Table S1 and Table S2). The pre-
diction performance of three classifiers was examined 
using both whole and feature-selected datasets.

Results
A total of 97,333 patients were included in our study, 
and 33.3% of individuals had cardiovascular symptoms. 
The mean age of patients was 54.08  years (SD 19.18), 
and 5170 (53.0%) were male (Table  1). The average ED 
admission time was 7.87 h (SD 4.37), and the average ED 
departure time was 8.97 h (SD 4.37). The distribution of 
the ESI levels was as follows: P1 30,037 (30.9%), P2 33,986 
(34.9%), P3 30,411 (31.2%), P4 1688 (1.7%), and P5 1211 
(1.2%). According to risk classification, 64,043 or 65.8% 
were classified as high-risk. At the time of the patient’s 
presentation in the ED, shortness of breath was the most 
prevalent presenting symptom noticed in 22,881 cases 
(23.5%).

The MACE was observed in 23,052 (23.7%) of the 
patients, In-hospital (up to 30  days) mortality in 10,888 

(11.2%) patients, and cardiac arrest in 5483 (5.6%) 
patients.

The distribution of diagnoses revealed that the major-
ity of patients had STEMI (6229), followed by NSTEMI 
(5627), heart failure (1171), cardiogenic shock (4810), 
and acute pulmonary edema (1783). Seasonal varia-
tion in mortality and cardiac arrest was observed in our 
data (Fig. 2). 34,679 (35.6%) patients presented in winter, 
i.e., December, January, and February, whereas 38,509 
(39.5%) presented in summer, i.e., April, May, and June 
of 2020. The majority of patients, around 68,893 (70.8%) 
presented on weekdays.

The proposed ANN structure sequential model of 
implementation of the best selected ANN model archi-
tecture for in-hospital (up to 30 days) mortality, cardiac 
arrest, and MACE was 491,801, 353,951, and 178,501, 
respectively, as trainable parameters. Trainable param-
eters distributed by layers are presented in Additional 
file 1.

The AUC in the validation dataset was 0.931 for the 
ANN, 0.911 for the RF, and 0.889 for the LR classifier for 
predicting in-hospital mortality, with f1-scores of 0.610, 
0.593, and 0.585, respectively (Fig. 3). Similarly, the AUC 
in the validation dataset for cardiac arrest was 0.968 for 
ANN, 0.962 for RF, and 0.946 for the LR classifier, with 
f1-scores of 0.67, 0.61, and 0.49, respectively (Fig. 4). In 
addition, the prediction of MACE and AUC in the valida-
tion data was 0.973 for ANN, 0.964 for RF, and 0.966 for 
LR, with f1-scores of 0.694, 0.671, and 0.499, respectively 
(Fig. 5). The AUCs of various models were compared to 
see the significant differences (Table 2).

The sensitivity for the prediction of in-hospital mortal-
ity was 94.6%, 87.9%, and 79.7% for the ANN, RF, and LR 
classifiers, with specificities of 93.3%, 93.3%, and 93.4%, 
respectively. Similarly, the sensitivity for cardiac arrest 
prediction using ANN, RF, and LR classifiers was 93.4%, 
94.8%, and 68.5%, with specificities of 97.2%, 96.8%, 
and 96.4%, respectively. Furthermore, the sensitivity for 
MACE prediction using ANN, RF, and LR classifiers was 
99.3%, 99.4%, and 99.2%, respectively, with the specifici-
ties being 94.5%, 94.2%, and 94.2%, respectively (Table 3).

Discussion
In this retrospective, single-center, cross-sectional study, 
we describe a new, more accurate way to predict MACE, 
in-hospital (up to 30  days) mortality from all causes, 
and cardiac arrest using a systemic grid technique in an 
ANN. The extensive dataset, comprising 97,333 patients, 
allowed for a robust analysis of the performance of the 
proposed ANN model in comparison to RF and LR clas-
sifiers and routinely used emergency severity index (ESI).

Of the three models we have chosen, ANN has an AUC 
of 0.97 for MACE, 0.968 for cardiac arrest, and 0.931 for 
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Table 1  Comparison of training and validation dataset and outcomes of emergency triage dataset (n = 97,333)

Training data Validation data Total
[n = 77,866] [n = 19,467] [n = 97,333]

  Age in (years) 54.04 (± 19.20) 54.23 (± 19.11) 54.08 (± 19.18)

  ED triage to admission time 7.87 (± 4.37) 7.86 (± 4.36) 7.87 (± 4.37)

  ED triage to ED discharge time 8.97 (± 4.38) 8.96 (± 4.36) 8.97 (± 4.37)

Triage vitals

  SBP (mmHg) 133.45 (± 21.97) 133.32 (± 21.9) 133.43 (± 21.95)

  DBP (mmHg) 76.86 (± 14.36) 76.61 (± 14.38) 76.81 (± 14.36)

  RR (breaths/min) 24.58 (± 7.87) 24.65 (± 7.9) 24.59 (± 7.88)

  Temperature (0C) 37.32 (± 0.78) 37.32 (± 0.77) 37.32 (± 0.78)

  Oxygen saturation (%) 94.46 (± 7.46) 93.95 (± 6.56) 94.44 (± 5.48)

  Heart rate (BPM) 102.18 (± 23.13) 102 (± 23.08) 102.14 (± 23.12)

Gender

  Male 41,402 (53.2%) 10,298 (52.9%) 51,700 (53.1%)

  Female 36,464 (46.8%) 9169 (47.1%) 45,633 (46.9%)

Triage category

  P1 23,968 (30.8%) 6069 (31.2%) 30,037 (30.9%)

  P2 27,257 (35%) 6729 (34.6%) 33,986 (34.9%)

  P3 24,331 (31.2%) 6080 (31.2%) 30,411 (31.2%)

  P4 1337 (1.7%) 351 (1.8%) 1688 (1.7%)

  P5 973 (1.2%) 238 (1.2%) 1211 (1.2%)

Risk stratification

  Low risk (P1 and P2) 26,624 (34.2%) 6666 (34.2%) 33,290 (34.2%)

  High risk (P3, P4, and P5) 51,242 (65.8%) 12,801 (65.8%) 64,043 (65.8%)

Seasons

  Winter (December, January, and February) 27,650 (35.5%) 7029 (36.1%) 34,679 (35.6%)

  Summer (April, May, and June) 30,881 (39.7%) 7628 (39.2%) 38,509 (39.6%)

Weeks

  Weekend 22,783 (29.3%) 5657 (29.1%) 28,440 (29.2%)

  Weekday 55,083 (70.7%) 13,810 (70.9%) 68,893 (70.8%)

Comorbid

  Diabetes mellitus 14,732 (18.9%) 3727 (19.1%) 18,459 (19%)

  Hypertension 18,363 (23.6%) 4648 (23.9%) 23,011 (23.6%)

  Ischemic heart disease 4559 (5.9%) 1118 (5.7%) 5677 (5.8%)

Triage presenting complaints/diagnosis

  Shortness of breath 18,298 (23.5%) 4583 (23.5%) 22,881 (23.5%)

  Sepsis 3383 (4.3%) 844 (4.3%) 4227 (4.3%)

  Chest pain 6786 (8.7%) 1689 (8.7%) 8475 (8.7%)

  Sweating 535 (0.7%) 124 (0.6%) 659 (0.7%)

  Tachycardia 1546 (2%) 397 (2%) 1943 (2%)

  Weakness 6640 (8.5%) 1678 (8.6%) 8318 (8.5%)

  COVID-19 4413 (5.7%) 1100 (5.7%) 5513 (5.7%)

  Shoulder pain 4 (0%) 3 (0%) 7 (0%)

  Epigastric pain 113 (0.1%) 29 (0.1%) 142 (0.1%)

Cardiac parameters

  Complete heart block 127 (0.2%) 45 (0.2%) 172 (0.2%)

  STEMI 4946 (6.4%) 1283 (6.6%) 6229 (6.4%)

  NSTEMI 4544 (5.8%) 1083 (5.6%) 5627 (5.8%)

  Unstable angina 142 (0.2%) 38 (0.2%) 180 (0.2%)

  Heart failure 934 (1.2%) 237 (1.2%) 1171 (1.2%)
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in-hospital (up to 30 days) mortality. The implementation 
of an ANN model for early prediction of MACE at the ED 
triage has the potential to revolutionize current practices 
and significantly improve patient outcomes. The sys-
temic grid search approach aims to enhance the model’s 
performance, ensuring optimal predictive capabilities. 
Comparison with traditional risk assessment methods 
will provide insights into the added value of the proposed 
model in the emergency care setting. By manipulating 
the hyperparameters of the various models, ANN with 
a systemic grid search approach provided the highest 
accuracy among the different models (RF and LR). The 
integration of machine learning models into routine ED 
procedures presents challenges related to interpretability, 
scalability, and real-time applicability. Addressing these 

challenges is crucial for the successful implementation of 
such models in clinical practice [25].

The use of artificial intelligence for the prediction of 
various outcomes in the emergency department has 
gained popularity among researchers in recent years. 
Jang DH et  al. [26] developed and evaluated ANN 
classifiers for early detection of patients at risk of car-
diac arrest in overcrowded emergency departments. 
The research utilized a single-center electronic health 
record (EHR)-based approach and compared three 
ANN models (multilayer perceptron-MLP, long-short-
term memory-LSTM, and hybrid) with other classifi-
ers such as the modified early warning score (MEWS), 
logistic regression, and random forest. In a dataset of 
374,605 emergency department visits, the ANN models 

Table 1  (continued)

Training data Validation data Total
[n = 77,866] [n = 19,467] [n = 97,333]

  Cardiogenic shock 3834 (4.9%) 976 (5%) 4810 (4.9%)

  Syncope 336 (0.4%) 88 (0.5%) 424 (0.4%)

  Atrial fibrillation 613 (0.8%) 169 (0.9%) 782 (0.8%)

  Acute pulmonary edema 1600 (2.1%) 393 (2%) 1993 (2%)

  Fluid overload 1402 (1.8%) 381 (2%) 1783 (1.8%)

  Hypertrophy 7 (0%) 3 (0%) 10 (0%)

  Cardiac tamponade 10 (0%) 2 (0%) 12 (0%)

Mortality

  Alive 69,191 (88.9%) 17,254 (88.6%) 86,445 (88.8%)

  Death 8675 (11.1%) 2213 (11.4%) 10,888 (11.2%)

  Cardiac arrest 4396 (5.6%) 1087 (5.6%) 5483 (5.6%)

Fig. 2  Seasonal variation of the number of cases of mortality and cardiac arrest
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consistently outperformed non-ANN models. The 
area under the receiver operating characteristic curve 
(AUROC) values for ANN models (MLP 0.929, LSTM 
0.933, and hybrid 0.936) surpassed those of non-ANN 
models, with the hybrid model demonstrating the high-
est performance. Similar to our findings, ANN classi-
fiers exhibited superior test characteristics, including 
sensitivity, specificity, positive predictive value (PPV), 
and negative predictive value (NPV), particularly when 
compared with MEWS thresholds and each other.

The study by Wu CC et  al. [27] addresses the lack 
of risk scores to distinguish non-ST-elevation myo-
cardial infarction (NSTEMI) from non-cardiogenic 
chest pain, aiming to reduce misdiagnosis in emer-
gency departments. Employing an artificial intelligence 
(AI) approach, an ANN model was developed using 
data from 268 chest pain patients. The model demon-
strated high accuracy (92.86%) and an impressive AUC 
of 98.4%. The ANN model exhibited strong sensitivity 
(90.91%), specificity (93.33%), positive predictive value 
(76.92%), and negative predictive value (97.67%).

Another study by Hong WS et al. [28] aimed to predict 
hospital admission at ED triage by incorporating patient 
history alongside triage information. In a retrospective 
analysis of 560,486 adult ED visits, three types of classifi-
ers (logistic regression, gradient boosting, and deep neu-
ral networks) were trained on datasets containing triage 
information, patient history, and the full set of variables. 
The models demonstrated robust predictive capabili-
ties, with the inclusion of patient history significantly 
enhancing performance compared to triage information 
alone. The low-dimensional XGBoost model, utilizing 
variables such as ESI level, outpatient medication counts, 
demographics, and hospital usage statistics, achieved 
an impressive AUC of 0.91. The findings underscore the 
effectiveness of machine learning in predicting hospital 
admission, emphasizing the importance of incorporating 
patient history for improved accuracy in admission risk 
assessment during ED triage.

Similarly, Goto T, et al. [29] have recently assessed the 
performance of machine learning approaches in predict-
ing clinical outcomes and disposition for children in ED 

Fig. 3  Precision-recall curve and AUC curve for artificial neural network (ANN) to other models comparison with RF and LR analysis that predicts 
30-day hospital mortality with and without selected features
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Fig. 4  Precision-recall curve and AUC curve for artificial neural network (ANN) to other models comparison with RF and LR analysis that predicts 
cardiac arrest in ED with and without selected features

Fig. 5  Precision-recall curve and AUC curve for artificial neural network (ANN) to other models comparison with RF and LR analysis that predicts 
MACE in ED with and without selected features
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triage, comparing them with conventional triage meth-
ods. The study focused on critical care (admission to ICU 
and/or in-hospital death) and hospitalization outcomes. 
Machine learning models (lasso regression, RF, gradient-
boosted decision tree, and deep neural network) were 
developed using routinely available triage data as pre-
dictors. Results showed that machine learning models, 
especially for hospitalization prediction, outperformed 
conventional triage methods, demonstrating higher dis-
criminative ability and reducing both undertriage and 
overtriage of pediatric patients. The study concludes that 

machine learning-based triage could enhance prediction 
accuracy and improve patient disposition in pediatric 
emergency settings.

The significant cardiovascular burden of the South 
Asian population is reflected in our study’s prevalence 
of 33.3%, owing to a Mediterranean diet and a seden-
tary lifestyle [30]. The high prevalence of cardiovascu-
lar symptoms and better prediction of MACE, cardiac 
arrest, and in-hospital 30-day mortality by ANN provide 
significant evidence to incorporate this model in elec-
tronic triage systems at emergency departments.

Table 2  Comparison of AUC of different models

AUC​ area under curve, ANN artificial neural network, MACE major adverse cardiac event, ESI emergency severity index, RF random forests, LR logistic regression 

*Significant

DeLong test to compare AUCs for validation dataset with selected features

ANN vs. ESI ANN vs. RF ANN vs. Logistic RF vs. ESI Logistic vs. ESI RF vs. logistic

In-hospital mortality  < 0.001* 0.486 0.325  < 0.001*  < 0.001* 0.045*

Cardiac arrest  < 0.001* 0.589 0.151  < 0.001*  < 0.001* 0.645

MACE  < 0.001* 0.638 0.956  < 0.001*  < 0.001* 0.185

Table 3  Sensitivity and specificity analysis of the reference and machine learning models in the overall and selected validation set

Acc. accuracy, Sens. sensitivity, Spec. specificity, ANN artificial neural network, RF random forests, LR logistic regression

Validation Selected features for validation

Acc Sens Spec Acc Sens Spec

(95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

In-hospital mortality

    ANN classifier 93.40% 94.60% 93.30% 92.46% 85.43% 92.84%

(93.1% to 93.8%) (93.1% to 95.9%) (93.02% to 93.7%) (92.08% to 92.83%) (83.09% to 87.56%) (92.46% to 93.21%)

    RF classifier 93.02% 87.90% 93.30% 92.52% 87.53% 92.78%

(92.6% to 93.3%) (85.9% to 89.8%) (92.9% to 93.6%) (92.14% to 92.89%) (85.27% to 89.55%) (92.40% to 93.15%)

    LR 92.50% 79.70% 93.40% 92.36% 84.93% 92.76%

(92.1% to 92.9%) (77.4% to 81.9%) (93.09% to 93.8%) (91.98% to 92.73%) (82.55% to 87.11%) (92.38% to 93.13%)

Cardiac arrest

    ANN classifier 97.10% 93.40% 97.20% 95.93% 86.40% 96.14%

(96.8% to 97.3%) (91.15% to 95.2%) (97.0% to 97.4%) (95.64% to 96.20%) (82.74% to 89.53%) (95.86% to 96.41%)

    RF classifier 96.80% 94.80% 96.80% 96.02% 87.82% 96.21%

(96.5% to 97.0%) (92.5% to 96.5%) (96.6% to 97.1%) (95.74% to 96.29%) (84.34% to 90.77%) (95.93% to 96.47%)

    LR 95.50% 68.50% 96.40% 95.10% 61.04% 96.28%

(95.2% to 95.8%) (64.6% to 72.2%) (96.1% to 96.7%) (94.79% to 95.40%) (57.18% to 64.81%) (96.00% to 96.55%)

Major adverse cardiac events (MACE)

    ANN classifier 95.40% 99.30% 94.50% 99.73% 93.35% 93.50%

(95.1% to 95.7%) (99.06% to 99.5%) (94.1% to 94.9%) (98.53% to 99.99%) (92.95% to 93.73%) (93.11% to 93.87%)

    RF classifier 95.20% 99.40% 94.20% 99.97% 93.35% 94.56%

(94.9% to 95.5%) (99.2% to 99.6%) (93.8% to 94.6%) (99.84% to 100.00%) (92.95% to 93.73%) (94.23% to 94.87%)

    LR 95.20% 99.02% 94.20% 99.78% 93.35% 94.52%

(94.8% to 95.5%) (98.6% to 99.3%) (93.9% to 94.6%) (99.56% to 99.90%) (92.95% to 93.73%) (94.20% to 94.84%)
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Our data also contrasts with the emergency severity 
index (ESI), which is used to stratify patients at risk in 
routine clinical practice but has poor predictive capac-
ity for identifying critically ill patients and a high degree 
of heterogeneity within each triage category [31]. Future 
research should compare this model to emergency physi-
cian gestalt in low-resource emergency rooms and assess 
patient outcomes.

Limitations
Our research has several limitations. Firstly, due to the 
absence of external validation, our retrospective analy-
sis employs data from a single institution, and hence, 
the performance of our model may not be generaliz-
able. Secondly, ANN has issues with interpretability and 
inferences, may not operate with huge non-functional 
datasets, and requires a significant amount of time to 
generate findings. We have used the systematic grid 
search approach to solve this issue. However, we feel our 
method can accommodate hyperparameters given the 
retrospective nature of the data. Thirdly, we did not test 
the influence of our model on real-time data and clini-
cal practice. This was beyond the scope of our research, 
but we will assess it in a future investigation. Fourthly, 
the potential for systemic bias in nurses’ practices is more 
prevalent in LMICs. There is an element of subjectivity in 
setting the triage ESI level, and any systemic bias would 
be mirrored in the model, preventing further generaliza-
bility. Our application of the ANN model in settings with 
limited resources will need an electronic health record 
with operational e-triage tools to make choices in real 
time. This is uncommon in many rural and some metro-
politan places, which is also one of the weaknesses of our 
study. However, this research confirms the notion that 
LMICs should employ ANN as a support tool to aid doc-
tors and reduce medical mistakes in their ED.

However, the application of artificial intelligence and 
machine learning in healthcare poses several difficulties, 
such as malpractice responsibility, patient satisfaction, 
insurance coverage, damage to physical integrity, innova-
tion expenses, legal challenges, healthcare professional 
liability, and a dearth of high-quality data [32].

Conclusion
For healthcare insurance in poor nations, a trans-
parent and efficient data governance mechanism is 
essential, with technical and regulatory requirements 
supplemented using a humanistic-centered approach. 
ANN with systematic grid searching predicted MACE, 
cardiac arrest, and in-hospital 30-day mortality in tri-
aging ED patients with cardiovascular symptoms with 
higher accuracy in contrast to LR and RF models. Our 
prediction model can, therefore, aid emergency room 

doctors in making prompt triage choices for patients 
with cardiovascular symptoms by categorizing and pri-
oritizing patients in the early phase based on their triage 
presentation criteria.
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