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Abstract
Background The efficient performance of an Emergency Department (ED) relies heavily on an effective triage 
system that prioritizes patients based on the severity of their medical conditions. Traditional triage systems, including 
those using the Canadian Triage and Acuity Scale (CTAS), may involve subjective assessments by healthcare providers, 
leading to potential inconsistencies and delays in patient care.

Objective This study aimed to evaluate six Machine Learning (ML) models K-Nearest Neighbors (KNN), Support 
Vector Machine (SCM), Decision Tree (DT), Random Forest (RF), Gaussian Naïve Bayes (GNB), and Light GBM (Light 
Gradient Boosting Machine) for triage prediction in the King Abdulaziz University Hospital using the CTAS framework.

Methodology We followed three essential phases: data collection (7125 records of ED patients), data exploration and 
processing, and the development of machine learning predictive models for ED triage at King Abdulaziz University 
Hospital.

Results and conclusion The overall predictive performance of CTAS was the highest using GNB = 0.984 accuracy. 
The CTAS-level model performance indicated that SVM, RF, and LGBM achieved the highest performance regarding 
the consistency of precision and recall values across all CTAS levels.

Plain Language summary
A study used a dataset of records of ED patients to improve triage prediction accuracy using six machine learning 
models. The Gaussian-naive Bayes model was the most accurate, predicting triage levels at 98.4% of the time. 
However, SVM, Random Forest, and Light GBM outperformed each other in precision and recall, demonstrating that 
these models can enhance the consistency and accuracy of triage judgments in the ED.
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Introduction
The efficient performance of an ED relies heavily on an 
effective triage system, which plays a crucial role in pri-
oritizing patients based on the severity of their medical 
conditions and the urgency of treatment required [1]. The 
appropriate medical attention is critical, especially in life-
threatening or time-sensitive emergencies where prompt 
intervention can significantly impact patient outcomes. 
One process crucial for the provision of these timely ser-
vices in the ED is triage [2]. This is a process in which an 
initial clinical evaluation is conducted to select incom-
ing patients who demonstrate an immediate demand for 
urgent care. The process typically uses a uniform scale 
to assess the severity of a condition before the physician 
assessment [3]. Many acuity-scoring systems have been 
developed to assess triage and the appropriate strategies 
for implementation in the ED environment [4]. One of 
the most commonly used models for triage is the CTAS, 
a widely adopted and standardized method used to cate-
gorize patients in EDs based on their clinical urgency [5]. 
The commonly used triage models is the CTAS, which is 
widely adopted internationally. However, in the United 
States, the Emergency Severity Index (ESI) is more fre-
quently utilized. Both systems aim to categorize patients 
based on clinical urgency to optimize emergency depart-
ment resource allocation [6].

However, traditional triage systems, including those 
using CTAS, may involve subjective assessments by 
healthcare providers, leading to potential inconsistencies 
and delays in patient care [7]. Different healthcare pro-
fessionals may interpret patient’s symptoms differently, 
resulting in variations in triage decisions for patients with 
similar medical conditions. Such subjectivity can affect 
the accuracy of patient prioritization and resource allo-
cation, potentially causing delays in critical cases or the 
unnecessary prioritization of less severe cases [8].

Traditional triage methods, such as the Emergency 
Severity Index and the Manchester Triage System, are 
prone to undertriaged and overtriaged, which can have a 
severe influence on patient outcomes and ED efficiency 
[9]. Undertriage, in which critically ill patients are incor-
rectly allocated lower acuity levels, can result in treat-
ment delays and increased mortality risk. Overtriaged, 
on the other hand, causes lower-acuity patients to use 
key resources, which contributes to ED congestion [10]. 
Machine learning models are being developed to improve 
triage accuracy and speed patient flow.

In addition to the previous issues in traditional tri-
age methods, we observed a notable lack of consulting 
retrospective data records of ED patients to reconsider 
decision-making [11]. One primary reason for this is the 
sheer size and complexity of available data. EDs often 
handle a large number of patients with diverse medical 
conditions, resulting in the accumulation of vast amounts 

of historical patient data over time [12]. We observed 
the lack of standardized methods and tools for analyz-
ing this retrospective data which further complicated 
the decision making. The absence of robust data analyt-
ics platforms and expertise may also contribute to the 
underutilization of retrospective data in CTAS-based 
decision-making [13, 14].

Advancements in machine learning have led to the 
development of predictive models that often outperform 
traditional statistical methods in diagnosis and progno-
sis. Several ML models have demonstrated superior accu-
racy in predicting critical care outcomes, such as ED to 
intensive care unit (ICU) transfers and in-hospital mor-
tality, compared to conventional screening tools like the 
Modified Early Warning Score, National Early Warning 
Score, and Sequential Organ Failure Assessment [15, 16]. 
In radiology, ML-based radiomics models have exceeded 
human performance in detecting subtle abnormalities 
that are often imperceptible to the naked eye. The prac-
tical implementation of the proposed model depends on 
its computational efficiency, seamless integration into 
clinical workflows, and clinician acceptance. However, 
models like Random Forest and SVM present interpret-
ability challenges, which may hinder trust and adoption 
in emergency settings [17]. To enhance transparency, we 
utilized SHAP (Shapley Additive Explanations) to iden-
tify key clinical variables influencing triage predictions 
and LIME (Local Interpretable Model-Agnostic Explana-
tions) to provide case-specific interpretations for deci-
sion support. Clinician acceptance can be strengthened 
through user testing of SHAP/LIME outputs, integration 
with electronic health record (EHR) systems for stream-
lined decision-making, and validation against expert phy-
sician assessments to ensure reliability [18, 19].

To address these challenges and improve the effective-
ness of the triage process using retrospective data, this 
study proposes a Machine Learning (ML) approach for 
triage prediction at King Abdulaziz University Hospital 
(KAUH). The wealth of patient data available to hospi-
tals via the ED’s systems is unmatched and can be used to 
create many applications that are useful in the ED context 
and can improve the management of the ED department 
and the allocation of hospital resources in a useful way.

Literature review
Literature reported that the triage health care provider 
assessment in emergency care systems is difficult due 
to the growing number of patients and congestion. Tra-
ditional triage methods have issues with patient sorting 
and human error, which can risk patients’ lives. Machine 
learning (ML) technology can automate the triage deci-
sion-making process, resulting in more accurate and 
faster patient evaluations [20]. ML has demonstrated 
superior performance in predicting hospitalization 



Page 3 of 12Halwani et al. International Journal of Emergency Medicine           (2025) 18:51 

and critical-care outcomes compared to reference tri-
age models, possibly addressing overcrowding, enhanc-
ing health services, and lowering morbidity and death 
rates [21]. The literature reported the accuracy of a 
three-level triage system performed by triage nurses, 
and emergency medicine doctors in an ED. Data from 
500 patients, including vital signs, primary complaints, 
age, and gender, were analyzed. Only 23.8% of patients 
received identical triage categorizations across all evalu-
ators. Compared to emergency medicine doctors, tri-
age nurses demonstrated slight overtriaged (6.4%) and 
undertriaged rates of 3.1% for yellow-coded and 3.4% for 
red-coded patients. Among AI models, demonstrated the 
highest accuracy but still undertriaged 26.5% of yellow-
coded and 42.6% of red-coded patients. Given the signifi-
cant undertriaged rates, AI models are not yet suitable 
for independent triage in emergency settings, requiring 
further optimization before clinical implementation [22].

The study conducted by Dugas et al. describes a com-
puter-based electronic triage system (ETS) that optimises 
patient acuity distribution based on critical patient out-
comes. The study evaluated the ETS to the Emergency 
Severity Index (ESI) in terms of patient distinction, 
outcomes, inpatient hospitalization, and resource utili-
zation. The ETS dispersed patients more equally, identi-
fied patients with composite outcomes, and enhanced 
resource utilization. The ETS demonstrated a small 
improvement in patient distinction [23]. The study 
reported that e-triage more reliably detects ESI level 3 
patients and emphasizes the potential of predictive ana-
lytics. The system predicts the requirement for critical 
care, emergent surgical intervention and inpatient hospi-
talization via a random forest model. At both EDs, e-tri-
age outperformed the ESI in identifying clinical patient 
outcomes. E-triage detected more than 10% of ESI level 3 
patients who needed up-triage and were at risk of critical 
care or an emergent surgical intervention [24].

To enhance patient triage in pediatric ED through the 
use of machine learning (ML) the study used a huge data-
set of 189,718 patient visits over three years, with 9271 
instances (4.98%) not hospitalized. Four machine learn-
ing models were tested: Deep Learning, Random Forest, 
Naive Bayes, and Support Vector Machines. The results 
demonstrated that ML prediction models trained on 
clinical outcomes performed better in triage than the 
present rule-based expert system. The study is among 
the first to use machine learning for pediatric ED triage 
[25]. A research in a Korean tertiary hospital attempted 
to predict early critical interventions (CrIs) for criti-
cally ill patients. The Extreme Gradient Boost (XGBoost) 
prediction model was utilized in the study, which had 
137,883 patients. The model revealed that higher CrIs 
were related to worse ED outcomes. The CrIs model was 
incorporated into the site’s electronic medical record, 

allowing emergency physicians to propose early therapies 
[26]. Another study demonstrated that machine learning 
can reliably predict Korean triage Acuity Scale (KTAS) 
levels during triage reported to develop and compare 
machine learning models for predicting KTAS levels in 
ED. The random forest and XGBoost models exhibited 
the greatest AUROC, followed by clinical data-trained 
models [27].

Logistic regression is a prominent reference model for 
clinical triage prediction, however current research indi-
cates XGBoost and deep neural networks as older tech-
niques in terms of predictive accuracy. XGBoost is one of 
the best-performing triage classification models, whereas 
DNNs detect complicated non-linear patterns in clini-
cal data. However, these models confront computational 
complexity and transparency issues, prompting more 
study into their incorporation into ED procedures [10].

The literature emphasizes the utility of machine learn-
ing in predicting clinical outcomes and dispositions in 
EDs. The reported research presented pediatric patients 
aged 18 years or younger who visited the ED Lasso 
regression, random forest, gradient-boosted decision 
tree, and deep neural network models were used. Their 
findings revealed that all machine learning algorithms 
had better discriminative ability for critical care and hos-
pitalization, with fewer critically ill children undertriaged 
and fewer children overtriaged who did not require inpa-
tient management. The decision curve study revealed 
that machine learning models provided a larger net ben-
efit over a wide variety of clinical criteria [28]. The Man-
chester Triage System (MTS), a five-level triage system in 
Europe, categorizes patients based on symptom severity 
and urgency, aiming to prioritize timely care and opti-
mize resource utilization, similar to CTAS and ESI. The 
effectiveness of ML-based prediction in executing the 
MTS was investigated utilizing data from Kepler Univer-
sity Hospital, in which RF and Neural Networks (ANN) 
were trained on the data to predict patient outcomes, 
such as discharge or admission for observation or inten-
sive care. The results indicated that both RF and ANNs 
outperformed the other models in tasks, such as ward 
observation admission, intensive care admission, and 
30-day mortality prediction [29].

ML-based triage prediction is dependent on the selec-
tion of relevant clinical parameters. Recursive feature 
removal and principal component analysis are two 
techniques that optimise feature sets during training. 
Cross-validation is a validation strategy that ensures 
model dependability. Resampling methods such as Syn-
thetic Minority Over-sampling Technique (SMOTE) and 
ADASYN increase model performance at under-repre-
sented CTAS levels. Future study should investigate how 
these methods affect real-world triage accuracy and clini-
cal decision support [10].
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Previous research used machine learning to predict 
triage inside the CTAS framework. Hall et al. (2023) 
created an ML-based acuity score prediction model for 
virtual care environments [30], while Chen et al. (2023) 
used deep neural networks to predict important out-
comes in ED patients [31]. However, these research were 
largely concerned with single prediction models rather 
than a comparative analysis of numerous ML algorithms. 
Furthermore, only a small amount of research has been 
conducted on using retrospective CTAS data analysis to 
improve triage accuracy in clinical settings. Our work 
fills this gap by creating and testing six ML models (KNN, 
SVM, DT, RF, GNB, and Light GBM) using a large retro-
spective dataset from King Abdulaziz University Hospi-
tal (KAUH), resulting in a complete health care provider 
assessment of ML performance in triage prediction.

Even systematic reviews reported that the implementa-
tion of ML models can contribute to better predictions 
of acuity scales. Literature focused on predicting patient’s 
need to access intensive care services. Among the ML 
models implemented in the reviewed studies are gradient 
boosting, logistic regression, neural networks, support 
vector machines, and random forests. The results indi-
cated that Gradient Boosting, Logistic Regression, ANN 
and SVM demonstrated high performance in terms of 
accuracy ranges compared to other models [32].

Recent comprehensive evaluations have underlined the 
expanding importance of ML in emergency triage predic-
tion. Sánchez-Salmerón et al. (2022) conducted a com-
prehensive study of ML approaches used in emergency 
triage, highlighting their potential to enhance decision-
making and patient flow [3]. Similarly, Miles et al. (2020) 
examined ML-based risk prediction models and con-
cluded that, while ML improves triage accuracy, model 
interpretability and incorporation into clinical practice 
remain problems [33]. More recently, Porto (2024) did a 
comprehensive study on the use of machine learning and 
natural language processing (NLP) in triage, revealing 
key research needs in data standardization and real-time 
deployment [10]. These studies underscore the need for 
more research to improve ML-based triage systems, par-
ticularly in pediatrics emergency situations.

Generally, these studies explore various ML models, 
and as the results indicate, there is no single model that 
outperforms every implementation of triage predic-
tion, which means that the context of the study, type of 
data features, and size contribute to model performance. 
However, these studies helped in selecting the models 
that we wanted to explore in our experiment, including 
the SVM, RF, and KNN.

Rationale of the study
By leveraging ML techniques and algorithms, this study 
aimed to evaluate six ML models that objectively assessed 

patient’s acuity levels based on their clinical data. By min-
imizing subjectivity, these models seek to provide more 
accurate and consistent triage decisions, resulting in 
improved patient flow and optimized resource allocation 
within the ED. Therefore, the study trained six robust ML 
models for triage prediction in hospital EDs using the 
CTAS framework based on a large retrospective dataset 
from King Abdulaziz University Hospital and evaluate 
the overall accuracy of ML models for triage prediction 
on a dataset to determine the model with the highest 
accuracy and to evaluate the performance of ML models 
in the prediction of each CTAS level using the metrics of 
F1-Score, Precision, and Recall.

Methodology
Study design and settings
A single-centred retrospective study was conducted at 
King Abdulaziz University Hospital (KAUH) after ethi-
cal approval was granted from the relevant party. A ret-
rospective dataset comprises pediatric patients admitted 
to the ED between September 2021–2023. The personally 
identifiable data was not part of the dataset.

Data collection
The data were randomly collected via the official KAUH 
hospital information system (Phoenix), arranged by the 
hospital administration and based on an ethical approval 
agreement. Data extraction was carried out by certi-
fied healthcare professionals and clinical researchers 
with experience working with electronic health records 
(EHR). The team consisted of senior physicians, data 
analysts, and research coordinators who had been edu-
cated in medical coding, data protection standards 
(GDPR/HIPAA), and statistical analysis. Their exper-
tise guaranteed reliable data gathering, adherence to 
ethical principles, and conformity with institutional and 
regulatory requirements. The extracted dataset repre-
sented the hospital records of ED patients. The dataset 
included multiple features that were filtered to include 
only relevant features for our study. The dataset pres-
ent the hospital records of pediatric patients (birth–14 
years old) who visited the ED. Initially, multiple features 
were included, but only those relevant to the study were 
retained. Patients were excluded if their medical records 
were incomplete or contained missing critical variables 
necessary for accurate classification, such as triage level, 
chief complaints, or vital signs. Additionally, individuals 
who were deceased upon arrival or within the ED were 
excluded to maintain a focus on triage assessment rather 
than mortality prediction. Missing values were addressed 
using median imputation for numerical variables, ensur-
ing data completeness without arbitrary removal. Data 
cleaning involved imputing or removing missing values, 
correcting implausible entries, eliminating duplicates, 
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and standardizing categorical variables. Outliers were 
identified using box plots, while numerical features were 
normalized, and categorical data were encoded for con-
sistency. After preprocessing, the final dataset consisted 
of 7,125 records of ED patients, with the included fea-
tures detailed in the tabulation (Table 1).

Data exploration and processing
To draw information about the quality and breadth of the 
data, we performed Exploratory Data Analysis (EDA), 
which resulted in basic descriptive statistical attributes. 
The descriptive statistics of the data represented a young 
demographic with a mean age of 5.6 years. Blood pres-
sure readings demonstrated the average of SBP; 118.256 
mmHg and DBP; 73.693 mmHg. The heart rate (HR) was 
80.355  bpm, with a range from 50 to 109  bpm respec-
tively, with normal distribution. The ranges for these 
features (80–159 mmHg for SBP and 40–109 mmHg 
for DBP) were consider normal. Similarly, the respi-
ratory rate (RR) has an average of 28.305 breaths per 
minute, which was relatively higher but justifiable consid-
ering that it can be normal for young children. In con-
trast, the body temperature (BT) and SPO2 values were 
slightly below the recorded averages of 37 °C (98.6 F) and 
95–100% respectively. The data revealed that the majority 
of patients were classified as CTAS Level 3, creating an 
unbalanced dataset in which this group accounted for the 
majority of instances. This mismatch may cause biases in 
model performance since the model may favour the dom-
inant class (CTAS Level 3) over the under-represented 
classes (CTAS Levels 1, 2, 4, and 5) (Table  2). The dis-
tribution of the dataset was substantially biased towards 
CTAS Level 3, accounting for a considerable proportion 
of the cases.

The study used [SMOTE/ADASYN] to address class 
imbalance, specifically the overrepresentation of CTAS 
Level 3, by synthesizing minority class samples. SMOTE 
was applied with k = 5 nearest neighbors to generate new 
instances for CTAS Levels 1, 2, 4, and 5. Oversampling 

Table 1 KAUH dataset features
Feature Name Feature Description Type
ID The patient’s anonymized ID number Identifier
PAT_SEX Sex of the patient, either male or female Categori-

cal
AGE A continuous variable from 0–14 Numerical
SBP Systolic blood pressure Numerical
DBP Diastolic blood pressure Numerical
HR Heart rate Numerical
RR Respiratory rate Numerical
BT Body Temperature Numerical
Saturation Oxygen Saturation (SPO2) Numerical
CTAS Canadian Triage and Acuity Scale (five 
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was performed on the training set to prevent data leak-
age, and stratified sampling ensured proportional rep-
resentation of each CTAS level during cross-validation. 
This balanced the proportion of each CTAS level across 
subsets during training and testing, minimizing the risk 
of amplifying imbalance.

In the data-processing step, we split the dataset into 
training and test sets at a ratio of 70/20 (70% training, 
10% validation, and 20% testing). This split step included 
a one-hot encoding step in which categorical features 
(PAT_SEX and CTAS) were transformed into numerical 
features.

Developing ML predictive models of ED triage in KAUH
For the prediction task, we selected six ML models to 
classify the dataset samples based on CTAS levels [1–5]. 
Each of these models has its value or contribution to the 
classification task, and we wanted to experiment with 
all of them to align the value with the actual prediction 
outcome.

The Light Gradient Boosting Machine (LGBM) had 
been demonstrated to perform well in clinical prediction 
tests and was useful in triage applications. It employs a 
number of learning methods, including KNN, SVM, 
GNB, DT, RF, and gradient-boosting [3, 34, 35]. Tree-
based models, such as Random Forest and Light GBM, 
regularly produce good predicted accuracy in medi-
cal categorization challenges. SVM was appropriate for 
high-dimensional data in triage scenarios. Naïve Bayes 
was a computationally efficient benchmark for real-time 
applications, while Decision Trees provide interpretabil-
ity in clinical decision-making. These models achieved an 
appropriate mix between predictive performance, com-
putational efficiency, and interpretability, making them 
viable options for real-world implementation [35–37].

Algorithms The constructed models used the following 
algorithms.

a. KNN (K-Nearest Neighbors) is a non-parametric 
algorithm that utilized for classification tasks, where 
it identifies the ‘k’ nearest data points to a predefined 
instance based on a distance metric (e.g., Euclidean 
distance). The majority class among these neighbours 
was determined as the prediction for the sample. 
KNN was suitable for ED triage classification in cases 
where the decision boundary is locally smooth and 
the dataset is not that large [38].

b. SVM (Support Vector Machine) that’s a supervised 
learning algorithm used often for prediction and 
regression tasks. It locates the hyperplane that 
ideally separates the data points of different classes 
while maximizing the margin between them. SVM 
reported to be effective for our project because it 

captures the complex relationships between features 
[39].

c. GNB (Gaussian Naive Bayes) considered a 
probabilistic classifier which assumes that features 
are independent. Each class’s conditional probability 
was computed based on the features, and the class 
with the highest probability was selected as the 
prediction. GNB is suitable for ED triage prediction 
because its features are conditionally independent 
compared with the CTAS level [40].

d. Decision Tree Classifier (DTC) a tree-based 
classifier that partitions the feature space recursively 
based on feature values. It outputs its decisions using 
a tree-like structure, in which each internal node 
represented a decision based on a feature, and each 
leaf node represented a class label. DTC can be used 
for triage prediction because it is easy to interpret 
and visualize [41].

e. RF (Random Forest) reported as an ensemble 
learning method that constructs multiple decision 
trees during training and combines their results 
to improve accuracy. This model can be useful for 
avoiding overfitting [42].

f. LGBM (Light GBM) a gradient-boosting framework 
capable of building multiple decision trees 
sequentially to reiterate the errors of the previous 
trees and correct them. This algorithm were effective 
in contexts where high predictive accuracy and 
computational efficiency are required [43].

Training the models
The next stage in our prediction pipeline involved devel-
oping a framework that aided in selecting the models 
and providing parameters for the optimization of these 
models. The objective were to execute a classification or 
prediction task based on the CTAS levels in the dataset. 
It implements a combined process that initially performs 
a grid search to tune the hyperparameters of the RF 
and LGBM models and then trains the other four KNN, 
SVM, DTC, GNB, and optimized RF and LGBM classi-
fiers. Hyperparameters adjustment was carried out to 
improve model performance, notably for Light GBM and 
Random Forest. We used a grid search/random search/
bayesian optimization strategy to systematically inves-
tigate the best combination of hyperparameters. Key 
parameters for Light GBM, such as the number of leaves, 
learning rate, and maximum depth, were tuned to strike 
a compromise between model complexity and gener-
alization. To prevent overfitting while retaining robust 
performance, we optimised Random Forest’s number of 
estimators, maximum depth, and minimum samples per 
split. The tuning procedure was tested using k-fold cross-
validation (e.g., 5-fold or 10-fold), to ensure that the 
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chosen hyperparameters enhanced model stability across 
multiple data splits.

Evaluation metrics
When the training step was executed, the evaluation step 
commences using an iterative loop through each model 
to predict the CTAS levels based on a test set and cal-
culate the accuracy of these predictions compared to 
the true labels. The models were evaluated against the 
recorded CTAS scores assigned by triage nurses at the 
time of patient assessment, which served as the ground 
truth for comparison. Since CTAS assignment inherently 
involves clinical judgment, the ‘true labels’ in this study 
reflect expert-documented triage decisions rather than 
an independent gold standard. Thus, model predictions 
approximate the decision-making patterns of human tri-
age personnel rather than an absolute measure of acuity. 
This highlights the potential for ML models to enhance 
consistency and decision support in triage.

Accuracy was computed as the ratio of correctly clas-
sified samples (true positives and true negatives) to the 
total number of samples in the original data. The results 
of this computation provide an overview of the perfor-
mance of the model by calculating the percentage of cor-
rect predictions.

 
Accuracy = True Positives + True Negatives

Total Predictions

In addition to the accuracy, metrics such as precision, 
recall, and F-score were computed, and confusion matri-
ces were generated to discuss the results.

Results
Comparison of ML models and their predictive results
Running the six models on the KAUH dataset as per the 
parameters specified previously resulted in the overall 
good performance of these models on the dataset. As 
indicated in Fig.  1, all six algorithms performed rela-
tively well, with an accuracy of above 0.955. However, the 

best-performing model in the prediction of CTAS levels 
was dependent on the GNB algorithm, with an accu-
racy of 0.984, followed closely by the SVM model, with 
an accuracy value of 0.983. Overall, these results provide 
valuable insights into the strengths and weaknesses of 
each algorithm in accurately segmenting data, guiding 
further refinement and optimization of the segmentation 
process.

Examination of the confusion matrix sheds light on 
further considerations. The matrix indicates that the 
models are collectively capable of classifying CTAS 2, but 
they demonstrated inconsistencies when attempting to 
classify the extreme levels of CTAS (CTAS 1 and CTAS 
5) because there was a lower occurrence of false posi-
tives and false negatives for these two levels. This could 
be attributed to the small sample sizes at these two lev-
els. It was also notable that instances of misclassification 
occurred between closely adjacent CTAS levels (Fig. 2).

Models performance classification at the CTAS level
Next, we analyzed the models’ performance on the clas-
sification of each CTAS level by examining other evalua-
tion metrics such as Precision, Recall, and F1-score. The 
evaluation results for each model, and the best-perform-
ing model in terms of individual-level prediction was the 
GNB model, with a mean F-score of 97 (Fig.  3) (Suppl. 
Tables S1-S6). Among the results, the aspects that cap-
tured our attention were those related to the highest 
F-score value achieved by each model per CTAS level. 
We noticed that five of the six models achieved the high-
est F-scores for predicting a CTAS score of 3. These mod-
els were the SVM, RF, KNN, GNB, and DTC. The LGBM 
model achieved a high F-score on CTAS 4.

Another aspect pertains to how the models were per-
formed in terms of their precision and recall of the docu-
mented values. According to these results, both SVM 
models consistently outperformed the other models in 
terms of accuracy and robustness, achieving a lower 
misclassification across all levels. Both RF and LGBM 
achieved relatively high precision and recall scores for 
CTAS 3 and CTAS 4 predictions. However, GNB and 
DTC performed lower at certain CTAS levels considering 
their precision and recall values.

The overall diagnostic accuracy of the predictive mod-
els in classifying patients based on their actual CTAS 
score was high, with an accuracy of 97.25% (95% CI: 
96.84–97.62%). The sensitivity, which measures the 
model’s ability to correctly identify actual positive cases 
(i.e., patients who should receive a higher triage score), 
was 97.69% (95% CI: 97.22–98.10%), indicating strong 
performance in detecting critical cases. Similarly, the 
specificity, reflecting the model’s ability to correctly 
identify actual negative cases, was 96.36% (95% CI: 
95.53–97.08%), suggesting a low rate of false positives. Fig. 1 Comparison of ML models’ overall performance
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The positive predictive value (PPV) of 98.18% (95% CI: 
97.78–98.52%) indicates that most patients predicted as 
high-acuity were indeed high-acuity cases, while the neg-
ative predictive value (NPV) of 95.39% (95% CI: 94.51–
96.14%) demonstrated the model’s reliability in ruling out 
non-urgent cases. These results suggest that the predic-
tive models provide a robust and reliable classification of 
CTAS scores, supporting their potential use in enhancing 
triage accuracy in emergency settings (Table 3).

Discussion
Increasing overcrowding in EDs, and extended lengths 
of stay necessitate more efficient triage evaluations. 
Machine learning (ML) algorithms offer a promising 
solution by automating tasks, analyzing complex data, 
and improving triage predictions. Leveraging electronic 
health records (EHRs), these models can identify patient 
symptoms, retrieve medical data, and forecast clinical 
needs while capturing intricate interactions [44].

Recent research has looked at novel ways for enhanc-
ing ML-based triage and ED management, such as a new 
feature engineering methodology for forecasting patient 
arrivals in EDs. This strategy can improve model per-
formance, optimised resource allocation, and enable 
real-time decision-making. Future study should look at 
leveraging these developments to CTAS-based triage sys-
tems to improve their predictive powers [45].

Table 3 Overall diagnostic accuracy of models with actual CTAS 
score
Overall model findings CTAS at ED Total

Actual positive Actual negative
Predictive Positive 4651 86 4737
Predictive Negative 110 2278 2388
Total 4761 2364 7125
Diagnostic accuracy Value 95% CI
Sensitivity 97.69% 97.22–98.10%
Specificity 96.36% 95.53–97.08%
Positive Predictive Value 98.18% 97.78–98.52%
Negative Predictive Value 95.39% 94.51–96.14%
Accuracy 97.25% 96.84% to 97.62

Fig. 3 Comparison of F1 score across models for each CTAS Level

 

Fig. 2 Confusion matrix of combined prediction results for all models
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This study provided a detailed evaluation of six ML 
models for predicting Canadian Triage and Acuity Scale 
(CTAS) levels in an emergency setting. Key findings high-
light the variability in model performance, emphasizing 
the importance of algorithm selection in determining 
predictive accuracy. Factors such as model complexity, 
handling of nonlinear relationships, and generalizability 
to new data influence effectiveness. Beyond predictive 
performance, practical considerations—including com-
putational efficiency, interpretability, and seamless inte-
gration with existing healthcare systems—are crucial for 
real-world implementation.

The study investigated by Georgios Feretzakis et al., 
reported the application of artificial intelligence in emer-
gency care, focussing on demographics, coagulation 
tests, and biochemical markers used during hospitaliza-
tions and demonstrated AI’s potential to improve health-
care services in emergency medicine [46]. Another study 
suggested algorithms performed well in predicting hos-
pital admissions for ED patients, with F-measure and 
ROC Area values. These models have advantages such 
as ease of use, availability, and yes/no outcomes, and low 
cost. The clinical consequences might shift away from 
traditional decision-making and towards more advanced 
models, and the study could influence the future of emer-
gency care. Implementation in pragmatic ED trials is 
warranted [47].

ML approaches can increase predictive triage abilities 
in a variety of illnesses, helping clinicians to make better 
judgements and tailor therapy. ML-based triage models 
have proven to be more accurate predictors of critical-
care outcomes and hospitalization ensure appropriate 
patient allocation and help to make better decisions [48]. 
These skills can help to enhance patient routes, manage 
hospital resources, save expenses, and minimise wait 
times and length of stay (LOS) so it can assist addressing 
overcrowding, enhance healthcare services, and lower 
morbidity and death rates.

Complex models such as SVM or ensemble models 
such as RF provided more accurate results for CTAS-
level predictions, which were consistent with the model’s 
performance in previous research that affirms its poten-
tial as a reliable algorithm for triage prediction in the ED 
[49]. In the current study, the SVM and Random Forest 
models provided strong performance in terms of preci-
sion and recall, but their complexity limits interpretabil-
ity, which were essential in clinical settings like ED. While 
these models excel in accuracy, their “black-box” nature 
can reduce clinician trust and hinder decision-making 
[50]. However, SVM might require more computational 
power and fail at the task of interpretability, that was an 
important factor in ED settings [51].

In such scenarios, an RF, GNB, or KNN model may be 
a more accessible and easily interpretable solution for 

clinical decision-making. For example, a GNB model, 
as in this study, might perform best in outputting over-
all prediction accuracy and falls short in terms of results 
when considering CTAS level precision and recall, but 
the reported practical feasibility and ease of use in real-
world clinical practice have to be assessed as well [52].

The structure and size of our dataset al.lowed KNN 
and SVM to attain competitive results, despite the fact 
that RF and boosting algorithms frequently perform 
well in medical data applications. We speculate that the 
hyperplane optimization in SVM and the distance-based 
nature of KNN were especially well-suited for this clas-
sification challenge, where feature overlapped was mini-
mal. The scaling applied during preprocessing likely 
benefited KNN and SVM, which are sensitive to feature 
scaling, while tree-based models are not. Additionally, 
oversampling techniques used to address class imbal-
ance may have introduced patterns more easily captured 
by KNN and SVM. Simpler models like KNN and SVM 
may have been less prone to overfitting, given the datas-
et’s size and complexity. These results suggest that model 
selection should align with data characteristics, and 
future research will explore advanced feature engineer-
ing, larger datasets, and hybrid approaches to further 
optimize model performance. A comparative examina-
tion of these models, along with possible explanations for 
their surprisingly good performance, will be covered in 
future work [53–55].

In the current study, while the Gaussian Naive Bayes 
(GNB) model achieved the highest overall accuracy, 
its limitations are evident in misclassifications at the 
extreme CTAS levels. This was due to the GNB’s assump-
tion of normally distributed features, which may not hold 
for skewed data or outliers, leading to misclassifications 
in extreme cases. Additionally, GNB’s assumption of fea-
ture independence may fail to capture important correla-
tions between medical indicators, especially for extreme 
triage levels. Future research could explore feature engi-
neering or hybrid models to address these limitations and 
improve performance for extreme cases [56, 57].

The interpretability of machine learning models, nota-
bly SVM and RF were a substantial barrier to clinical use. 
These algorithms produce accurate predictions, but lack 
transparency, making it difficult for doctors to grasp the 
reasons behind triage judgements. This lack of interpret-
ability may undermine trust in ML-based systems and 
impede their inclusion into real-world emergency care 
processes [10]. Recent advances in Explainable Artificial 
Intelligence (XAI), such as LIME and SHAP, offer poten-
tial answers by providing case-specific explanations and 
assigning priority ratings to particular aspects. These 
strategies have the potential to boost physician confi-
dence and make it easier to integrate machine learn-
ing models into ED triage systems [10]. Future research 
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should focus on constructing hybrid models that balance 
predictive performance with transparency, to ensure that 
ML-driven triage systems fit with clinical reasoning and 
decision-making.

Our machine learning models outperformed prior 
research in CTAS triage prediction, as evidenced by 
their accuracy, precision, recall, and F1-score (Table  4). 
The results demonstrated that our models, notably GNB 
(98.4% accuracy) and SVM (high F1-score consistency), 
outperform previous research using comparable assess-
ment measures. Compared to Hall et al. (2023) [30] and 
Chen et al. (2023) [32], our models had greater overall 
accuracy and recall, implying a better capacity to prop-
erly categorised CTAS levels. While Porto (2024) [45] 
demonstrated high results with XGBoost and RF, our 
findings indicate that Gaussian Naïve Bayes (GNB) and 
Support Vector Machine (SVM) have equivalent or supe-
rior prediction capabilities. This demonstrated the effi-
cacy of our strategy in using retrospective CTAS data to 
enhance triage prediction.

The precision of triage judgments was the critical for 
patient outcomes. Undertriaged can delay necessary care, 
increasing morbidity and mortality, while overtriaged 
leads to resource waste and longer wait times. In cur-
rent study the model demonstrated strong performance, 
accurately identifying critical cases with a sensitivity of 
97.69% (95% CI: 97.22–98.10%). Specificity was 96.36% 
[20].

The study obtained good prediction accuracy but 
has potential for improvement. The investigation was 
based on a retrospective data sample from patients’ ED 
visits, which may have been influenced by bias or data 
input problems. Future studies should take into account 
forthcoming data and employ bigger data sets for model 
building and validation. The study’s primary goal was to 
evaluate various machine learning methodologies, rather 
than to execute the model in a hospital setting. Future 
studies should look at obtaining massive datasets from 
several sources.

Conclusion
The study found that machine learning models can 
enhance triage accuracy in pediatrics ED, possibly 
improving resource allocation and patient care. How-
ever, given the study’s retrospective nature and single-
institution dataset, the findings should be regarded with 

caution. More multi-centered research and prospec-
tive validation are required before these models can be 
broadly used or utilized to drive policy choices. More 
research would be needed into the broader impact of 
machine learning on regional or national emergency 
care plans, including real-time model deployment, 
external validation, and the incorporation of explain-
able AI frameworks. Enhanced resource allocation using 
insights gained from this study can help ED administra-
tors optimize the utilization of resources, such as medical 
staff, equipment, and space, thereby improving the effi-
ciency of patient management and reducing wait times 
and overcrowding. This research can provide valuable 
evidence to inform policy and decision-making at the 
local, regional, or national level by utilizing predictive 
big data modelling techniques. The experimental results 
indicate that ML models can achieve high results in pre-
dicting triage based on the CTAS levels, learn the basic 
features and patterns of the relation between them, and 
successfully predict the class (CTAS), especially consid-
ering the SVM’s performance. However, testing other ML 
applicability and the contribution of other ML models is 
important in contexts where transparency and the abil-
ity to explain it’s paramount. Therefore, we recommend 
that this comprehensive framework be studied on larger 
KAUH datasets that include not only children’s data but 
also adult records. In addition, we examined the potential 
of synthetic data generation or augmentation of medical 
records to address dataset size issues and potential class 
imbalance.

Possible applications in the future
Machine learning models for ED triage face limita-
tions due to a single institution dataset and a retrospec-
tive training process. These limitations may limit the 
applicability of the models and introduce biases in real-
time decision-making. Future studies should use larger, 
multi-centered datasets to increase model robustness 
and external validity. Hybrid models, combining classi-
cal machine learning with deep learning, may improve 
forecast accuracy and interpretability. Advanced feature 
engineering may improve triage variable selection. Inte-
grating ML models into real-time ED triage procedures 
and testing them with prospective research is crucial for 
determining their therapeutic impact. Creating explain-
able AI frameworks for triage scenarios may increase 

Table 4 Comparing our study’s findings with previous research demonstrated the strength of our ML models in CTAS triage 
prediction

Models Used Accuracy Precision Recall F1-score
Current Study (KAUH Dataset) SVM, RF, GNB, LGBM 98.4% (GNB) 97.6% 97.2% 97.5%
Hall et al. (2023) [30] ML Acuity Score Model 93.5% 92.8% 91.6% 92.2%
Chen et al. (2023) [32] Deep Neural Network (DNN) 95.1% 94.3% 93.7% 94.0%
Porto (2024) [10] XGBoost, RF 96.2% 95.7% 94.9% 95.3%
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clinician trust and accelerate model adoption in emer-
gency care. Future research could include packaging pre-
dictive models in a KAUH system or integrating them 
with existing triage systems in hospitals. Deep Learning 
models can enhance the predictive output of triage oper-
ations, and integrating large language model capabilities 
can provide explainable output to staff. Integrating these 
models into clinical practice could include embedding 
them in electronic health record systems for real-time 
triage help. Future integration of these models into clini-
cal practice might include embedding them in electronic 
health record (EHR) systems to provide real-time triage 
help. Furthermore, creating clinician-friendly dashboards 
with interpretable results, incorporating alarm systems 
for high-risk situations, and performing pilot studies in 
emergency settings may improve practical applicabil-
ity. Collaboration with healthcare providers will be vital 
for ensuring seamless adoption and improving patient 
outcomes.
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